Cancer associated retinopathy

From EyeWiki
Original article contributed by: Joseph Kim MD
All contributors: Dale Fajardo, Ed.D., M.B.A., Joseph Kim MD, Vinay A. Shah M.D. and WikiWorks Team
Assigned editor: Judy E. Kim, MD
Review: Assigned status Update Pending by Vinay A. Shah M.D. on December 21, 2014.
{| cellspacing="5"

|-!align="right" |Lead Editors: |add |- !align="right" |Contributing Editors: |add |-


Article summary goes here.

Disease Entity[edit | edit source]

Cancer associated retinopathy

Disease[edit | edit source]

Cancer associated retinopathy (CAR) is a subgroup of a disease entity called autoimmune retinopathy. First described by Sawyer in 1976 with three cancer patients with blindness caused by retinal degeneration. In CAR, retinal degeneration occurs in the presence systematic cancer and antibodies against the retinal tissue. In many instances patient's visual loss from CAR precedes the diagnosis of cancer.

Etiology[edit | edit source]

There has been different antibodies isolated against many specific retinal proteins:

- Recoverin

- Carbonic anhydrase

- Trasducin B

- A-enolase


- PNR photoreceptor cell-specific nuclear receptor

- Heat shock protein HSC 70

- Arrestin

There are many more antibodies against different retinal proteins that are not yet identified.

Many different cancers have been associated with CAR. Small cell lung carcinoma, breast cancer, and gynecologic cancer are the most common cancers associated with CAR. However CAR has been found in other types of lung cancer, colon cancer, melanoma, skin squamous cancer, kidney cancer, pancreatic, lymphoma, basal cell tumor, and prostate cancer.

Pathophysiology[edit | edit source]

Keltner et al developed an autoimmune theory in 1983 when he found antibodies against retinal photoreceptors in patient with lymphoma who developed acute vision loss and retinal degeneration. Autoimmunity occurs when tumor antigens triggers a immune response from the host which creates antibodies that cross reacts with a retinal protein. This leads to cell apoptosis/death and retinal degeneration.

History/Symptoms[edit | edit source]

Patient usually present with acute/subacute painless vision loss over few weeks to months with associated positive visual phenomena (such as flashes or flickering of lights) and photosensitivity. They are usually bilateral but may by asymmetric and sequential. Patient symptoms depend on which retinal tissue is affected as CAR can cause damage to the rods (causing nyctalopia and constricted visual fields) and/or cones (affecting color and central vision). Anti-recoverin antibodies, which is the most common antibody associated with CAR, usually present with acute severe vision loss and paracentral or equatorial scotoma. CAR with anti-enolase antibodies causes cone dysfunction typically leading to asymmetric central vision loss with slower progression.

Physical examination[edit | edit source]

- Decreased central visual acuity

- Visual field defects (central, paracentral, or equatorial scotomas)

- Prolonged glare after light exposure

- Prolonged dark adaptation

- Afferent pupillary defect if asymmetric involvement

- Decreased color vision

- Fundus can appear normal initally. But with progression there is evidence of retinal degenerations (RPE thinning and mottling, attenuation of the arterioles, optic nerve pallor). Other fundus findings such as macular edema, vitreous cells, vascular sheathing, and periphlebitis have been documented.

Clinical diagnosis[edit | edit source]

There is no set diagnostic criteria for CAR. The diagnosis is made by combination of patient's clinical symptoms, exam findings, diagnosis of systematic cancer, and positive antibodies against retinal proteins. Patient's visual symptoms may precede the diagnosis of systematic cancer, making the diagnosis of CAR difficult initially. Other causes of retinal degeneration must be ruled out such as any hereditary or toxic retinal degeneration. Positive anti-retinal antibodies alone does not give the diagnosis of CAR since anti-retinal antibodies can be found in the normal population and in patient with non-paraneoplastic autoimmune retinopathy.

Diagnostic procedures[edit | edit source]

- Visual fields: central, cecocentral, or equatorial scotomas

- Fundus Angiography - is usually normal. Rarely, it could show areas of leakage if vasculitis or macular edema is present

- Optical Coherence Tomography (OCT) - may show retinal thinning on OCT

- Electroretinogram (ERG): Full field ERG are almost always abnormal (attenuated or absent photopic and scotopic response). In CAR where mainly the cones are affected, full field ERG could be normal but multifocal ERG will be abnormal.

Below demonstrates a bilateral paracentral visual field defect in a CAR patient

tBilateral visual field defect in a CAR patient

The right fundus of the same CAR patient as above appears normal. 

Normal right fundus of the same CAR patient with visual field defects.

Laboratory test[edit | edit source]

Anti-retinal antibody testing is now commercially available.

Differential diagnosis[edit | edit source]

- Retinitis Pigmentosa

- Cone Dystrophy

- Toxic Retinopathy

- Acute Zonal Outer Occult Retinopathy

- Toxic-Nutritional Optic Neuropathy

- Hereditary Optic Neuropathy

Management[edit | edit source]

Long term immunosuppression is the main therapy for CAR. Many different systematic immunosuppressive medications (high dose steriod with methylpredprednisolone and prednisone, cyclosporin, azathioprine, alemtuzumab), intravenous immunoglobulin, plasmapheresis, and combination of these treatments have been tried with invariable results. These treatments may provide mild to moderate transient visual acuity and field improvement, but overall there is no significant long lasting improvement and the visual prognosis remains poor. The treatment of the systematic cancer usually do not lead to improvement of the vision.

If patient with suspected CAR and without any history of malignancy, work up for occult malignancy should be performed including a thorough medical history and physical exam, chest x-ray, and basic blood work (such as liver enzymes). Additional testing may be necessary depending on the findings of the initial work up.

References[edit | edit source]

Sawyer RA, Selhorst JB, Zimmerman LE, Hoyt WF. Blindness caused by photoreceptor degeneration as a remote effect of cancer. American Journal of Ophthalmology 1976 81:606-613

Hecklenlively JR, Ferreyra HA. Autoimmune retinopathy: A review and summary. Semin Immunopathol 2008 30:127-134

Chan JW. Paraneoplastic retinopathies and optic neuropathies. Survery of Ophthalmology 2003 48(1):12-38

Keltner JL, Roth AM, Chang S. Photoreceptor degeneration - A possible autoimmune disease. Archives of Ophthalmology 1983 101:564-569

Raj MK, Purvin VA. Cancer associated and related autoimmune retinopathy. eMedicine.

Adamus G. Ren G. Weleber RG. Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy. BMC Ophthalmology 2004 June 4;4:5

Weleber RG. Watzke RC. Shults WT. et al. Clinical and electrophysiologic characterization of paraneoplastic and autoimmune retinopathies associated with antienolase antibodies. Am J Ophthalmol 2005 139:780-794

Mohamed Q. Harper CA. Acute optical coherence tomographic findings in cancer-asscoiated retinopathy. Arch Ophthalmol 2007 125(8):1132-3

Ferreyra HA. Jayasundera T. Kahn NW. et al. Management of autoimmune retinopathies with immunosuppresion. Arch Ophthalmol 2009 127(4):390-397

Guy J. Aptsiauri N. Treatment of paraneoplastic visual loss with intravenous immunoglobulin. Arch Ophthalmol 1999 117:471-477

Espandar L. OBrien S. Thirkill C. et al. Successful treatment of cancer-associated retinopathy with alemtuzumab. J Neurooncol 2007 83:295-302

Add text here