Orbital Lymphoma

From EyeWiki
Revision as of 12:40, April 12, 2021 by Tony.Ching.AAO (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Disease Entity

Lymphoproliferative tumors of the ocular adnexa encompass a wide spectrum of lesions that range from reactive benign hyperplasia to malignant lymphoma. Ocular adnexal lymphoma (OAL) is a localized form of systemic lymphoma affecting the orbit, the lacrimal gland, the lids and/or the conjunctiva. It comprises 6-8% of orbital tumors, and 10-15% of adnexal lesions. OAL affect both genders, with a slight female predilection.


Ocular adnexal lymphoma (OAL) is considered primary if it involves the ocular adnexa alone and secondary if it is accompanied by a lymphoma of identical type at another site. OAL is defined as solitary if it involves one or both orbits only, extension if it involves contiguous sites such as the sinuses, and systemic if remote sites are involved. The majority of lesions in this area are non-Hodgkin lymphoma (NHL), 80% of which arises from B-lymphocytes, 14% from T cells and only 6% from natural killer cells. The most common primary OAL is the low-grade malignant extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (ENZL or MALT), but other types can occur: follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL) and lymphoplasmatic lymphoma (LPL). Secondary OALs arise from systemic disease and are represented by intermediate or high-grade follicular lymphomas. The reported frequency of involvement of periocular sites is: conjunctiva, 20% to 33%; orbit, 46% to 74%; and eyelid, 5% to 20%.


Tumors arise from germinal center cells (follicular lymphoma), mantel cells (mantle cell lymphoma) or memory B cells (extranodal marginal zone lymphoma) all of which have undergone antigen exposure. The infection/inflammation/mutation model (IMM) of lymphopatogenesis explains why the ocular adnexa is so often affected by lymphoma, occurring as a result of mistakes during normal lymphocyte response to infection or inflammation.


Clinical and imaging data cannot be used to make the diagnosis of OAL with certainty. Diagnosis is made based on a combination of histopathologic, immunophenotypic, and molecular genetic studies, therefore, open biopsy should be obtained. If conjunctival or eyelid OAL is identified clinically, MRI or CT of the orbit is indicated for staging. If there is palpable cervical adenopathy, imaging of this region is performed as well. As more than half of patients have systemic lymphoma at the time of orbital diagnosis or will develop the disease, it is important to run a complete systemic evaluation at diagnosis and at regular follow-ups. The role of positron-emission tomography (PET) scanning in lymphoma staging and more particularly in staging of OAL is not established. PET has greater sensitivity in detecting abnormalities than does CT or MRI, but the significance of minimal lesions is not known.


Patients will often present with an orbital process that has been slowly progressing, and typically painless. Severe pain, or rapid onset should raise suspicion for a different process.


In the conjunctiva: the typical lesion is salmon or flesh-pink color. In the orbit, eyelid or lacrimal gland: when palpable, the masses are firm. If present in the lacrimal gland, the typical presentation may appear to be an "S-shaped" mass due to the lateral location of the lacrimal gland. Proptosis should be measured with exophthalmometry. Ptosis and decreased levator function may indicate superior orbital and levator muscle involvement, and motility should also be measured if the patient complains of diplopia.


Many lesions are asymptomatic but depending on the location of the mass, patients can complaint of exophthalmos, pain or diplopia, as well of conjunctival, eyelid, orbital or lacrimal gland mass. With a lacrimal gland mass or anterior orbital extension, patients complain of an eyelid swelling or fullness in the lid. If the tumor is located in the posterior orbit, the patient can complain of proptosis, or double vision.

Differential diagnosis

It includes benign lymphoproliferative lesions, epithelial tumors, inflammatory and infectious lesions, among others.


Radiation: it has been the most frequently used modality for treating OAL, because many patients present with localized disease. Electron or photon irradiation can be used depending on the site, extent of disease and the tumor grade or type. A wide variation of doses has been recommended, ranging from lows of 15–20 Gy up to 40 Gy. Typical doses are 26 to 36 Gy. Recurrences of low-grade types are often treatable with local modalities.

Chemotherapy: With solitary OAL, systemic chemotherapy is not indicated, except for diffuse large B-cell lymphoma (DLBCL). Chemotherapy for OAL when it is part of stage II or greater disease has included the use of standard regimens for systemic lymphoma.

Immunotherapy - The local use of IFN-a for OAL is not yet established. - Antilymphocyte antibodies represent the newest form of lymphoma treatment. Using antibodies to CD20 (rituximab), destruction of B cells can take place based on the induction of apoptosis, complement-mediated cytolysis, and antibody-dependent cytoxicity.

In microbial-associated MALT lymphomas, antimicrobial treatment can lead to remission. Further studies are needed to verify this infectious association and those with other possible inciting pathogens.


Typically, surgery is performed to obtain adequate specimens for biopsy and histopathological evaluation. Complete excision is usually not indicated nor performed, and can risk injury to vital orbital structures. Excision is reserved for small localized lesions of the conjunctiva and orbit. Cryotherapy has been used infrequently for OAL, with varying success. Typically, it is used in patients with conjunctival lymphoma to reduce tumor bulging or those unable to receive other treatment modalities.


Complications include biopsy related injury to adjacent eyelid and orbital structures as well as side effects from treatment modalities such as orbital radiotherapy


The site of presentation of OAL has been associated with prognosis with 20% of conjunctival, 35% of orbital, and 67% of eyelid OALs developing systemic lymphoma after 4 years. Among the common OAL tumor types, EMZL, FL, and LPL are considered low grade or indolent, whereas DLBCL and MCL are considered high grade. Mortality for EMZL ranges from 0-20%, FL 20-37%, MCL 38-100% and LPL 14-100%. The mean time to relapse was over 5 years, suggesting that longer follow-up than typically recommended is needed.


  1. Bardenstein DS. Ocular Adnexal Lymphoma: Classification, Clinical Disease, and Molecular Biology. Ophthalmology clinics of North America. 2005; vol:18(1):187-197.
  2. Bardenstein DS. Orbital and adnexal lymphoma. In: Singh AD, Damato BE, Peér J, Murphree AL, Perry JD, ed. Clinical Ophthalmic Oncology. Philadelphia. Saunders-Elsevier. 2007:565-570.
  3. Bernardini FP, Bazzan M. Lymphoproliferative disease of the orbit. Current opinion in ophthalmology. 2007; vol 18(5):398 -401
  4. Rootman J, White VA, Connors JM, Gascoyne RD. Lymphoproliferative, leukemic, and Histiocytic Lesions of the Orbit. In: Rootman J, ed. Diseases of the orbit: a multidisciplinary approach. Philadelphia, 2nd ed. Lippincott Williams & Wilkins; 2003:385-416
  5. Honavar SG, Manjandavida FP. Recent Advances in Orbital Tumors--A Review of Publications from 2014-2016. Asia Pac J Ophthalmol (Phila). 2017 Mar-Apr;6(2):153-158.
  6. Yen MT, Bilyk JR, Wladis EJ, Bradley EA, Mawn LA. Treatments for ocular adnexal lymphoma: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125:127-136.