Intravitreal Steroid Injections and Implants
All content on Eyewiki is protected by copyright law and the Terms of Service. This content may not be reproduced, copied, or put into any artificial intelligence program, including large language and generative AI models, without permission from the Academy.
Medical Therapy
Overview
Corticosteroids exert their anti-inflammatory effect through inhibition of the arachidonic acid pathway, leading to decreased synthesis of inflammatory mediators. This anti-inflammatory effect is useful in countering vascular permeability and leukocyte infiltration in the retina and uvea. The advent of intravitreal corticosteroid delivery has become a mainstay in the treatment of vision-threatening conditions such as diabetic macular edema, retinal vein occlusion, and non-infectious uveitis. Intravitreal corticosteroid injections and sustained-release implants allow for the maintenance of therapeutic drug levels directly in the eye for extended periods of time while sparing the morbidity of systemically administered steroids.
Medications, Dosage, and Administration
The main intravitreal steroid agents in clinical use are triamcinolone acetonide, dexamethasone, and fluocinolone acetonide. Dosage, formulation, and administration are detailed below:
| Medication | Brand Name | Dose | Formulation | Administration Method | Duration | References |
|---|---|---|---|---|---|---|
| Triamcinolone acetonide | Triesence | 4 mg in 0.1 mL | Preservative-free suspension | Intravitreal injection; Pars plana; 27G or 30G needle | ~3 months | [1] |
| Kenalog-40 | Suspension with Benzyl Alcohol | Intravitreal injection; Pars plana; 27G or 30G needle | [2] | |||
| Xipere | Preservative-free suspension | Suprachoroidal injection; Pars plana; 30G microneedle (900 µm or 1100 µm) | [3] | |||
| Dexamethasone | Ozurdex | 0.7 mg | Biodegradable PLGA polymer matrix | Intravitreal injection; Pars plana; 22G single-use applicator | ~3-6 months | [4][5] |
| Fluocinolone acetonide | Retisert | 0.59 mg | Non-biodegradable tablet | Surgical implantation; Pars plana; 3-4 mm scleral incision | ~30 months | [6][7] |
| Iluvien | 0.19 mg | Non-biodegradable polyimide tube | Intravitreal injection; Pars plana; 25G single-use applicator | ~36 months | [8][9] | |
| Yutiq | 0.18 mg | Non-biodegradable polyimide tube | Intravitreal injection; Pars plana; 25G single-use applicator | ~36 months | [10][11] |
Patient Selection and Evidence
Intravitreal triamcinolone acetonide (IVTA)
Macular edema
- Diabetic macular edema (DME)
- Short-term efficacy but limited durability and increased risk of elevated IOP and cataract formation in the treatment of DME. A 2020 Cochrane review found that intravitreal triamcinolone compared to laser photocoagulation showed inconsistent results across trials, increased risk of cataract progression, and increased need for IOP-lowering medications.[12] The largest RCT with 2-year follow-up comparing IVTA to sham injection showed improved VA and half the risk of further vision loss, however further injections, significant IOP elevation, and cataract surgery were more common in the IVTA group.[13] A 2009 systematic review of RCTs showed that IVTA improves vision in refractory DME at 3 months, but benefits are not sustained at 6 months.[14] The landmark DRCR exploratory analysis found that in eyes with proliferative diabetic retinopathy at baseline, IVTA with prompt laser significantly reduced worsening, but in eyes without baseline proliferative diabetic retinopathy, IVTA showed no benefit and a trend toward increased worsening.[15]
- Retinal vein occlusion–related macular edema (CRVO/BRVO)
- Short-term efficacy for macular edema secondary to CRVO and no benefit in BRVO. Significant associated risk of elevated IOP and cataract formation. The landmark SCORE trial found that in CRVO, both 1 mg and 4 mg IVTA resulted in approximately a 5-fold increase in visual acuity gain; however, the 1 mg dose demonstrated a superior safety profile with lower requirement for IOP-lowering medications and similar rates of cataract progression. In BRVO, the trial found that IVTA at either dose showed no advantage over standard grid laser photocoagulation.[16] A 2023 meta-analysis found that 4 mg IVTA achieved better VA improvement and retinal thickness reduction compared to 1-2 mg at 4-6 months, but had higher risk of adverse effects.[17] The AAO's 2015 review found level I evidence for short-term efficacy of intravitreal corticosteroids including IVTA, but with higher frequency of adverse events compared to anti-VEGF agents.[18]
- Post‑operative cystoid macular edema (Irvine–Gass)
- Noninfectious uveitic macular edema
- Effective option for noninfectious uveitic macular edema, providing significant reduction in central macular thickness and improvement in visual acuity. Strong support exists for IVTA in this patient population based on the AAO’s 2024 assessment of 18 studies,[23] which reports level I and II evidence, including the pivotal POINT trial.[24] In the POINT trial, IVTA showed superior reduction in central macular thickness and improvement in mean VA compared to periocular triamcinolone, and comparable outcomes to intravitreal dexamethasone implant. Compared to bevacizumab, IVTA also showed superior anatomical outcomes and similar visual acuity improvements. IVTA was still associated with steroid-related adverse effects including IOP elevation and posterior subcapsular cataract progression. The advent of suprachoroidal triamcinolone, which was FDA approved on the basis of the PEACHTREE trial,[25] may allow for comparable posterior segment exposure with less anterior segment steroid exposure and possibly lower IOP and cataract risk. A recent meta-analysis suggests that intravitreal and suprachoroidal triamcinolone are the most effective routes for improving vision and reducing macular thickness.[26]
Noninfectious intraocular inflammation / uveitis without macular edema
- Limited role in treating noninfectious uveitis without macular edema. Systemic corticosteroids and immunosuppressive therapy are standard practice for managing noninfectious uveitis without macular edema (see Intermediate Uveitis). IVTA is sometimes used as second-line therapy when topical corticosteroids are ineffective and systemic therapy is not tolerated[27] Limited case series discuss IVTA use in clearance of vitreous inflammation in selected cases of severe vitritis.[28]
Surgical visualization
- Effective for use during pars plana vitrectomy to improve visualization of the posterior vitreous cortex, vitreous membranes, and internal limiting membrane. The crystalline particles adhere to these transparent structures, making them stand out against the fundus.[29][30][31] IVTA-assisted vitrectomy has been associated with lower rates of retinal breaks and intraoperative retinal detachment compared with vitrectomy alone.[32] This technique is used in various vitreoretinal surgeries for visualization of the internal limiting membrane.[33] The main adverse effect is short-lived IOP elevation in about 5% of cases, often responsive to topical medication.
Dexamethasone Intravitreal Implant (Ozurdex)
Macular edema
- Diabetic macular edema
- Effective in treatment-resistant cases, pseudophakic patients, and patients who cannot comply with frequent anti-VEGF injections. Compared to anti-VEGF therapy (first-line therapy), there is a higher risk of IOP elevation and cataract formation. Current evidence includes the landmark MEAD trials[34][35] and recent meta-analyses.[36] These studies suggest that in DME with inadequate response to prior anti-VEGF therapy, Ozurdex produced a significantly greater VA improvement and central retinal thickness reduction compared to anti-VEGF therapy.
- Retinal vein occlusion–related macular edema (CRVO/BRVO)
- Demonstrates significant improvements in VA and central retinal thickness in CRVO and BRVO. Evidence for therapeutic effect comes from the GENEVA trial, comparing Ozurdex to sham injection. Dexamethasone intravitreal implants require fewer injections and may be an option in eyes with refractory macular edema to anti-VEGF therapy, especially in pseudophakic patients and non-steroid-responders.[37][38][39]
- Noninfectious uveitic macular edema
- Ozurdex is effective for noninfectious uveitic macular edema, demonstrating superior functional and anatomic outcomes compared to periocular steroids, high rates of inflammation control, but increased rates of IOP-related issues. This evidence comes from the AAO 2024 review, POINT trial, MERIT trial,[40] and meta-analysis.[41] The MERIT trial compared dexamethasone implant to ranibizumab and methotrexate in patients with minimally active or inactive uveitis and persistent or recurrent uveitic macular edema, and was the only treatment group with statistical improvement in VA.
Noninfectious intraocular inflammation / uveitis without macular edema
- Ozurdex is FDA-approved for noninfectious uveitis even in the absence of macular edema affecting the posterior segment and is effective in improving visual acuity and controlling intraocular inflammation. Studies show improvement in vitreous haze across uveitis etiologies including idiopathic, sarcoidosis, and Behçet's disease.[42]
Please reference the Dexamethasone Intravitreal Implants Eyewiki page for further details on clinical trials.
Fluocinolone acetonide (FAc) intravitreal implant
Macular edema
- Diabetic macular edema
- Sustained efficacy but high risk for IOP elevation and cataract formation. Indicated in DME insufficiently responsive to available therapies and in the US for patients previously treated with corticosteroids without clinically significant IOP elevation. Current evidence includes the FAME trials,[43][44][45] PALADIN study,[46][47] and meta-analysis.[48] Five-year real-world data showed sustained reduction in central retinal thickness and most eyes retaining improved or stable vision.[49]
- Retinal vein occlusion–related macular edema (CRVO/BRVO)
- FAc implants are off-label for RVO and evidence is limited to small prospective case series with only modest visual gains and high risk of IOP elevation.[50]
- Noninfectious uveitic macular edema
- FAc implants are effective for long-term control of macular edema due to noninfectious intermediate, posterior, and panuveitis but are frequently complicated by IOP elevation, need for glaucoma surgery, and cataract. Evidence from the AAO 2024 review, landmark MUST trial,[51] and RCTs.[52][53][54][55] The MUST trial showed that at a 2-year timepoint, the 0.59 mg FAc implant provided similar control of uveitis and macular edema as systemic anti‑inflammatory therapy but with a higher risk of IOP elevation and glaucoma surgery, while longer‑term results favored systemic therapy for visual outcomes and ocular safety.
Noninfectious intraocular inflammation / uveitis without macular edema
- Effective for long‑term control of noninfectious intermediate, posterior, and panuveitis, particularly in eyes poorly controlled on systemic therapy. Evidence comes from the major implant trials and real‑world studies above, but there is no robust, dedicated subgroup analysis isolated to eyes without macular edema.
Please reference the Fluocinolone Acetonide Eyewiki page for further details on clinical trials.
Summary
Intravitreal and implantable corticosteroids are mainstays in the treatment of sight-threatening posterior segment diseases. Intravitreal triamcinolone is useful for short‑term control of inflammation or edema, including acute or perioperative indications. Suprachoroidal delivery offers a promising alternative for uveitic macular edema. Dexamethasone implants are a reliable mid-term option for RVO, DME, and non-infectious uveitis, particularly in pseudophakic patients. Fluocinolone acetonide implants help with the challenges of chronic disease by providing years of therapeutic coverage from a single procedure. While these therapies have clear benefits, patient selection should be carefully considered to minimize sequelae related to ocular hypertension and cataract development.
Clinical Pharmacology
Warnings/Precautions
General
Information for Patients
Drug Interactions
Carcinogenesis/Mutagenesis/Impairment of Fertility
Pregnancy
Nursing Mothers
Pediatric Use
Adverse Reactions
Overdosage
How Supplied
Patient’s Instructions for Use
References
- ↑ TRIESENCE- Triamcinolone Acetonide Injection, Suspension. FDA Report. https://fda.report/DailyMed/3f045347-3e5e-4bbd-90f8-6c3100985ca5. Accessed January 28, 2026.
- ↑ KENALOG-40 INJECTION. BMS. https://packageinserts.bms.com/pi/pi_kenalog-40.pdf. Accessed January 28, 2026.
- ↑ XIPERETM (Triamcinolone Acetonide Injectable Suspension), for Suprachoroidal Use. AccessDataFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/211950s000lbl.pdf. Accessed January 28, 2026.
- ↑ OZURDEX® (Dexamethasone Intravitreal Implant). AccesDataFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022315s009lbl.pdf. Accessed January 28, 2026.
- ↑ Haller JA, Bandello F, Belfort R, et al. Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Macular Edema Due to Retinal Vein Occlusion. Ophthalmology. 2010;117(6):1134-1146.e3. doi:10.1016/j.ophtha.2010.03.032
- ↑ RETISERTTM (Fluocinolone Acetonide Intravitreal Implant) 0.59 Mg. AccessDataFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/021737lbl.pdf. Accessed January 28, 2026.
- ↑ Tomkins-Netzer O, Lightman SL, Burke AE, et al. Seven-Year Outcomes of Uveitic Macular Edema: The Multicenter Uveitis Steroid Treatment Trial and Follow-up Study Results. Ophthalmology. 2021;128(5):719-728. doi:10.1016/j.ophtha.2020.08.035
- ↑ ILUVIEN® (Fluocinolone Acetonide Intravitreal Implant) 0.19 Mg For Intravitreal Injection Initial U.S. Approval: 1963. AccessDataFDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/201923s000lbl.pdf. Accessed January 28, 2026.
- ↑ Saedon H, Anand A, Yang YC. Clinical utility of intravitreal fluocinolone acetonide (Iluvien®) implant in the management of patients with chronic diabetic macular edema: a review of the current literature. Clin Ophthalmol. 2017;11:583-590. doi:10.2147/OPTH.S131165
- ↑ YUTIQTM (Fluocinolone Acetonide Intravitreal Implant) 0.18 Mg, for Intravitreal Injection. AccessDataFDA. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210331Orig1s000Lbl.pdf. Accessed January 28, 2026.
- ↑ Steeples LR, Pockar S, Jones NP, Leal I. Evaluating the Safety, Efficacy and Patient Acceptability of Intravitreal Fluocinolone Acetonide (0.2mcg/Day) Implant in the Treatment of Non-Infectious Uveitis Affecting the Posterior Segment. Clin Ophthalmol. 2021;15:1433-1442. doi:10.2147/OPTH.S216912
- ↑ Rittiphairoj T, Mir TA, Li T, Virgili G. Intravitreal steroids for macular edema in diabetes. Cochrane Eyes and Vision Group, ed. Cochrane Database of Systematic Reviews. 2020;2020(11). doi:10.1002/14651858.CD005656.pub3
- ↑ Mohamed Q, Gillies MC, Wong TY. Management of Diabetic Retinopathy: A Systematic Review. JAMA. 2007;298(8):902. doi:10.1001/jama.298.8.902
- ↑ Yilmaz T, Weaver CD, Gallagher MJ, et al. Intravitreal Triamcinolone Acetonide Injection for Treatment of Refractory Diabetic Macular Edema. Ophthalmology. 2009;116(5):902-913. doi:10.1016/j.ophtha.2009.02.002
- ↑ Bressler SB. Exploratory Analysis of the Effect of Intravitreal Ranibizumab or Triamcinolone on Worsening of Diabetic Retinopathy in a Randomized Clinical Trial. JAMA Ophthalmol. 2013;131(8):1033. doi:10.1001/jamaophthalmol.2013.4154
- ↑ Chew EY. Laser Photocoagulation and Intravitreal Injection of Triamcinolone for Retinal Vein OcclusionsTREATMENT FOR RETINAL VEIN OCCLUSIONS. JAMA. 2009;302(15):1693. doi:10.1001/jama.2009.1523
- ↑ Mihalache A, Hatamnejad A, Patil NS, et al. Intravitreal Triamcinolone Acetonide for Diabetic Macular Edema and Macular Edema Secondary to Retinal Vein Occlusion: A Meta-Analysis. Ophthalmologica. 2024;247(1):19-29. doi:10.1159/000533443
- ↑ Yeh S, Kim SJ, Ho AC, et al. Therapies for Macular Edema Associated with Central Retinal Vein Occlusion. Ophthalmology. 2015;122(4):769-778. doi:10.1016/j.ophtha.2014.10.013
- ↑ Konstantopoulos A, Williams CPR, Luff AJ. Outcome of intravitreal triamcinolone acetonide in postoperative cystoid macular oedema. Eye. 2008;22(2):219-222. doi:10.1038/sj.eye.6702582
- ↑ Kuley B, Storey PP, Wibbelsman TD, et al. Resolution of Pseudophakic Cystoid Macular Edema: 2 mg Intravitreal Triamcinolone Acetonide versus 40 mg Posterior Sub-Tenon Triamcinolone Acetonide. Current Eye Research. 2021;46(6):824-830. doi:10.1080/02713683.2020.1842458
- ↑ Mylonas G, Georgopoulos M, Malamos P, et al. Comparison of Dexamethasone Intravitreal Implant with Conventional Triamcinolone in Patients with Postoperative Cystoid Macular Edema. Current Eye Research. 2017;42(4):648-652. doi:10.1080/02713683.2016.1214968
- ↑ Orski M, Gawęcki M. Current Management Options in Irvine–Gass Syndrome: A Systemized Review. JCM. 2021;10(19):4375. doi:10.3390/jcm10194375
- ↑ Smith JR, Thorne JE, Flaxel CJ, et al. Treatment of Noninfectious Uveitic Macular Edema with Periocular and Intraocular Corticosteroid Therapies. Ophthalmology. 2024;131(9):1107-1120. doi:10.1016/j.ophtha.2024.02.019
- ↑ Thorne JE, Sugar EA, Holbrook JT, et al. Periocular Triamcinolone vs. Intravitreal Triamcinolone vs. Intravitreal Dexamethasone Implant for the Treatment of Uveitic Macular Edema. Ophthalmology. 2019;126(2):283-295. doi:10.1016/j.ophtha.2018.08.021
- ↑ Yeh S, Khurana RN, Shah M, et al. Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis. Ophthalmology. 2020;127(7):948-955. doi:10.1016/j.ophtha.2020.01.006
- ↑ Liu K, Yi J, Xu J, Zhong L, Su N. Efficacy of different routes of triamcinolone acetonide administration on macular edema: A systematic review and network meta-analysis. Ilios EP, ed. PLoS ONE. 2025;20(1):e0317782. doi:10.1371/journal.pone.0317782
- ↑ Maghsoudlou P, Epps SJ, Guly CM, Dick AD. Uveitis in Adults: A Review. JAMA. 2025;334(5):419. doi:10.1001/jama.2025.4358
- ↑ Kramer M, Ehrlich R, Snir M, et al. Intravitreal injections of triamcinolone acetonide for severe vitritis in patients with incomplete Behcet’s disease. American Journal of Ophthalmology. 2004;138(4):666-667. doi:10.1016/j.ajo.2004.04.064
- ↑ Dyer D, Callanan D, Bochow T, et al. CLINICAL EVALUATION OF THE SAFETY AND EFFICACY OF PRESERVATIVE-FREE TRIAMCINOLONE (TRIESENCE® [TRIAMCINOLONE ACETONIDE INJECTABLE SUSPENSION] 40 MG/ML) FOR VISUALIZATION DURING PARS PLANA VITRECTOMY. Retina. 2009;29(1):38-45. doi:10.1097/IAE.0b013e318188c6e2
- ↑ Bakri S. Use of triamcinolone during vitrectomy surgery to visualize membranes and vitreous. OPTH. September 2008:891. doi:10.2147/OPTH.S3434
- ↑ Sakamoto T, Ishibashi T. Visualizing vitreous in vitrectomy by triamcinolone. Graefes Arch Clin Exp Ophthalmol. 2009;247(9):1153-1163. doi:10.1007/s00417-009-1118-2
- ↑ Yamakiri K, Sakamoto T, Noda Y, et al. Reduced Incidence of Intraoperative Complications in a Multicenter Controlled Clinical Trial of Triamcinolone in Vitrectomy. Ophthalmology. 2007;114(2):289-296.e1. doi:10.1016/j.ophtha.2006.07.044
- ↑ Tognetto D, Zenoni S, Sanguinetti G, Haritoglou C, Ravalico G. STAINING OF THE INTERNAL LIMITING MEMBRANE WITH INTRAVITREAL TRIAMCINOLONE ACETONIDE: Retina. 2005;25(4):462-467. doi:10.1097/00006982-200506000-00011
- ↑ Boyer DS, Yoon YH, Belfort R, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904-1914. doi:10.1016/j.ophtha.2014.04.024
- ↑ Lim JI, Kim SJ, Bailey ST, et al. Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology. 2025;132(4):P75-P162. doi:10.1016/j.ophtha.2024.12.020
- ↑ Chi SC, Kang YN, Huang YM. Efficacy and safety profile of intravitreal dexamethasone implant versus antivascular endothelial growth factor treatment in diabetic macular edema: a systematic review and meta-analysis. Sci Rep. 2023;13(1):7428. doi:10.1038/s41598-023-34673-z
- ↑ Scott IU, Campochiaro PA, Newman NJ, Biousse V. Retinal vascular occlusions. The Lancet. 2020;396(10266):1927-1940. doi:10.1016/S0140-6736(20)31559-2
- ↑ Carnevali A, Bacherini D, Metrangolo C, et al. Long term efficacy and safety profile of dexamethasone intravitreal implant in retinal vein occlusions: a systematic review. Front Med. 2024;11:1454591. doi:10.3389/fmed.2024.1454591
- ↑ Yuan Q, Gao Y, Liu Y, Xu H, Wang T, Zhang M. Efficacy of single-dose intravitreal dexamethasone implantation for retinal vein occlusion patients with refractory macular edema: A systematic review and meta-analysis. Front Pharmacol. 2022;13:951666. doi:10.3389/fphar.2022.951666
- ↑ Acharya NR, Vitale AT, Sugar EA, et al. Intravitreal Therapy for Uveitic Macular Edema—Ranibizumab versus Methotrexate versus the Dexamethasone Implant. Ophthalmology. 2023;130(9):914-923. doi:10.1016/j.ophtha.2023.04.011
- ↑ Chen KY, Chan HC, Chan CM. Are dexamethasone implants a safe and effective breakthrough in uveitis treatment? A systematic review and meta-analysis. Steroids. 2025;223:109675. doi:10.1016/j.steroids.2025.109675
- ↑ Pohlmann D, Vom Brocke GA, Winterhalter S, Steurer T, Thees S, Pleyer U. Dexamethasone Inserts in Noninfectious Uveitis. Ophthalmology. 2018;125(7):1088-1099. doi:10.1016/j.ophtha.2017.12.038
- ↑ Campochiaro PA, Brown DM, Pearson A, et al. Long-term Benefit of Sustained-Delivery Fluocinolone Acetonide Vitreous Inserts for Diabetic Macular Edema. Ophthalmology. 2011;118(4):626-635.e2. doi:10.1016/j.ophtha.2010.12.028
- ↑ Campochiaro PA, Brown DM, Pearson A, et al. Sustained Delivery Fluocinolone Acetonide Vitreous Inserts Provide Benefit for at Least 3 Years in Patients with Diabetic Macular Edema. Ophthalmology. 2012;119(10):2125-2132. doi:10.1016/j.ophtha.2012.04.030
- ↑ Syed YY. Fluocinolone Acetonide Intravitreal Implant 0.19 mg (ILUVIEN®): A Review in Diabetic Macular Edema. Drugs. 2017;77(5):575-583. doi:10.1007/s40265-017-0722-4
- ↑ Singer MA, Sheth V, Mansour SE, Coughlin B, Gonzalez VH. Three-Year Safety and Efficacy of the 0.19-mg Fluocinolone Acetonide Intravitreal Implant for Diabetic Macular Edema: The PALADIN Study. Ophthalmology. 2022;129(6):605-613. doi:10.1016/j.ophtha.2022.01.015
- ↑ Merrill PT, Holekamp N, Roth D, Kasper J, Grigorian R. The 0.19-mg Fluocinolone Acetonide Intravitreal Implant Reduces Treatment Burden in Diabetic Macular Edema. American Journal of Ophthalmology. 2023;248:16-23. doi:10.1016/j.ajo.2022.09.017
- ↑ Fallico M, Maugeri A, Lotery A, et al. Fluocinolone acetonide vitreous insert for chronic diabetic macular oedema: a systematic review with meta-analysis of real-world experience. Sci Rep. 2021;11(1):4800. doi:10.1038/s41598-021-84362-y
- ↑ Dobler E, Mohammed BR, Chavan R, Lip PL, Mitra A, Mushtaq B. Clinical efficacy and safety of intravitreal fluocinolone acetonide implant for the treatment of chronic diabetic macular oedema: five-year real-world results. Eye. 2023;37(11):2310-2315. doi:10.1038/s41433-022-02338-2
- ↑ Ramchandran RS, Fekrat S, Stinnett SS, Jaffe GJ. Fluocinolone Acetonide Sustained Drug Delivery Device for Chronic Central Retinal Vein Occlusion: 12-Month Results. American Journal of Ophthalmology. 2008;146(2):285-291.e1. doi:10.1016/j.ajo.2008.03.025
- ↑ Kempen JH, Altaweel MM, Holbrook JT, et al. Randomized Comparison of Systemic Anti-inflammatory Therapy Versus Fluocinolone Acetonide Implant for Intermediate, Posterior, and Panuveitis: The Multicenter Uveitis Steroid Treatment Trial. Ophthalmology. 2011;118(10):1916-1926. doi:10.1016/j.ophtha.2011.07.027
- ↑ Jaffe GJ, Foster CS, Pavesio CE, Paggiarino DA, Riedel GE. Effect of an Injectable Fluocinolone Acetonide Insert on Recurrence Rates in Chronic Noninfectious Uveitis Affecting the Posterior Segment. Ophthalmology. 2019;126(4):601-610. doi:10.1016/j.ophtha.2018.10.033
- ↑ Jaffe GJ, Pavesio CE. Effect of a Fluocinolone Acetonide Insert on Recurrence Rates in Noninfectious Intermediate, Posterior, or Panuveitis. Ophthalmology. 2020;127(10):1395-1404. doi:10.1016/j.ophtha.2020.04.001
- ↑ Andrews H, Nair A, Hamdan S, Gangaputra S, Kim SJ. A 1-Year Retrospective Case Series of Fluocinolone Acetonide 0.18-mg Injectable Intravitreal Implant in Chronic Uveitis. American Journal of Ophthalmology. 2023;246:251-257. doi:10.1016/j.ajo.2022.10.008
- ↑ Studsgaard A, Clemmensen KØ, Nielsen MS. Intravitreal fluocinolone acetonide 0.19 mg (Iluvien®) for the treatment of uveitic macular edema: 2-year follow-up of 20 patients. Graefes Arch Clin Exp Ophthalmol. 2022;260(5):1633-1639. doi:10.1007/s00417-021-05504-6

